

IEC 63652-1

Edition 1.0 2026-02

INTERNATIONAL STANDARD

**NFC Forum Specifications -
Part 1: NFC Wireless Charging**

THIS PUBLICATION IS COPYRIGHT PROTECTED

Copyright © 2026 IEC, Geneva, Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either IEC or IEC's member National Committee in the country of the requester. If you have any questions about IEC copyright or have an enquiry about obtaining additional rights to this publication, please contact the address below or your local IEC member National Committee for further information.

IEC Secretariat
3, rue de Varembé
CH-1211 Geneva 20
Switzerland

Tel.: +41 22 919 02 11
info@iec.ch
www.iec.ch

About the IEC

The International Electrotechnical Commission (IEC) is the leading global organization that prepares and publishes International Standards for all electrical, electronic and related technologies.

About IEC publications

The technical content of IEC publications is kept under constant review by the IEC. Please make sure that you have the latest edition, a corrigendum or an amendment might have been published.

IEC publications search -

webstore.iec.ch/advsearchform

The advanced search enables to find IEC publications by a variety of criteria (reference number, text, technical committee, ...). It also gives information on projects, replaced and withdrawn publications.

IEC Just Published - webstore.iec.ch/justpublished

Stay up to date on all new IEC publications. Just Published details all new publications released. Available online and once a month by email.

IEC Customer Service Centre - webstore.iec.ch/csc

If you wish to give us your feedback on this publication or need further assistance, please contact the Customer Service Centre: sales@iec.ch.

IEC Products & Services Portal - products.iec.ch

Discover our powerful search engine and read freely all the publications previews, graphical symbols and the glossary. With a subscription you will always have access to up to date content tailored to your needs.

Electropedia - www.electropedia.org

The world's leading online dictionary on electrotechnology, containing more than 22 500 terminological entries in English and French, with equivalent terms in 25 additional languages. Also known as the International Electrotechnical Vocabulary (IEV) online.

Warning! Make sure that you obtained this publication from an authorized distributor.

INTERNATIONAL ELECTROTECHNICAL COMMISSION

**NFC Forum Specifications -
Part 1: NFC Wireless Charging****FOREWORD**

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- 2) The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at <https://patents.iec.ch>. IEC shall not be held responsible for identifying any or all such patent rights.

IEC 63652-1 has been prepared by technical area 15: Wireless Power Transfer, of IEC technical committee 100: Audio, video and multimedia systems and equipment. It is an International Standard.

It is based on Wireless Charging Technical Specification Version 2.0 and was submitted as a Fast-Track document.

The text of this International Standard is based on the following documents:

Draft	Report on voting
100/4399/FDIS	100/4434/RVD

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this International Standard is English.

The structure and editorial rules used in this publication reflect the practice of the organization which submitted it.

This document was developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

NOTE In accordance with ISO/IEC Directives, Part 1, IEC PASs are automatically withdrawn after 4 years.

Wireless Charging

Technical Specification

Version 2.0

2021-08-19

[WLC]

NFC Forum™

Copyright © 2018-2021 NFC Forum

Contents

1	Introduction.....	9
1.1	Objectives.....	9
1.2	Applicable Documents or References	9
1.3	Administration.....	10
1.4	Trademark and Logo Usage	10
1.5	Intellectual Property.....	10
1.6	Special Word Usage.....	10
1.7	Requirement Numbering.....	10
1.8	Notational Conventions.....	11
1.8.1	Notations	11
1.8.2	Values of Parameters	12
1.9	Abbreviations	13
1.10	Glossary.....	14
2	Wireless Charging User Experience	18
2.1	User Experience Model Overview	18
3	WLC System Overview.....	19
3.1	Sequence Overview	21
3.2	Functions Properly	21
3.3	Wireless Charging Operating Volume	22
3.4	Generic Wireless Charging Support Specifications	22
4	Radio Frequency (RF) Interface	24
4.1	Analog Interface	24
4.2	WLC-L Specification Context.....	26
4.3	WLC-P Specification Context Load Modulation Listener to Poller using class 7 WLC-L	26
5	Static WPT Power Definition.....	28
6	Negotiated WPT Power Definition.....	29
6.1	Power of a WLC-P.....	29
6.1.1	Specification Purpose.....	29
6.1.2	Specification Context.....	29
6.2	WLC-L Sustainability	30
6.2.1	Specification Purpose.....	31
6.2.2	Specification Context.....	31
7	Reference Equipment.....	34
7.1	The Purpose of the NFC Forum Reference Equipment.....	34
7.2	Reference Wireless Charging Poller	35
7.2.1	Specification Purpose.....	35
7.2.2	Specification Context.....	35
7.3	Reference Wireless Charging Listener.....	37
7.3.1	Specification Purpose.....	37
7.3.2	Specification Context.....	37
8	Foreign Object Detection	39
8.1	Introduction	39
8.2	Types of Foreign Objects	39
8.3	Foreign Object Detection Mechanisms	39

8.4	Foreign Object Detection Requirements	40
8.5	WLC-P Impedance Change Detection	40
8.5.1	Specification Purpose.....	42
8.5.2	Specification Context.....	42
8.5.3	Impedance Change Definition	43
9	WLC-L WPT Stop Request and WLC-P WPT Stop Detection.....	44
9.1	WPT Stop Request.....	44
10	NFC Link Establishment	47
10.1	WLC-P	47
10.2	WLC-L	48
11	WLC Control Protocol Messages	49
11.1	Protocol Overview	49
11.1.1	Control Protocol Messages.....	49
11.1.2	WLC-L System Level Integration Overview	50
11.1.3	Power Adjustment Generic Timing Requirements	52
11.2	WLC Capability Message (WLC_CAP)	54
11.2.1	Message Overview.....	54
11.2.2	WLC Capability Record.....	55
11.2.4	JiFOD Method Record	71
11.3	WLC Poll Information (WLCP_INFO)	74
11.3.1	Message Overview.....	74
11.3.2	WLC Poll Information Record	74
11.4	WLC Listen Control (WLCL_CTL)	80
11.4.1	Message Overview.....	80
11.4.2	WLC Listen Control Record	81
11.5	WLC Protocol Error.....	90
12	WLC Procedure Flowcharts.....	91
12.1	WLC Procedure Flowchart for the WLC-P.....	91
12.2	WLC Procedure Flowchart for the WLC-L.....	100
A	Exhibit A.....	106
B	Parameter Values	107
B.1	WLC OV Parameters	107
B.2	Specification Parameters	107
B.3	Calibration Procedure for the Reference WLC-P	110
B.4	Calibration Procedure for the Reference WLC-L	112
B.5	Orientation and Alignment of NFC Forum Reference Equipment	114
C	Design Information for NFC Forum Reference Equipment	115
C.1	Reference WLC-P.....	115
C.1.1	PCB Design of the Reference WLC-Ps.....	115
C.1.2	Reference WLC-P - Bill Of Materials	117
C.1.3	Mechanical Dimensions.....	119
C.1.4	Reference WLC-P Printed Circuit Board (PCB) Construction	121
C.2	Reference WLC-L.....	121
C.2.1	PCB Design of the Reference WLC-L6 and Reference WLC-L7	121
C.2.2	Reference WLC-L - Bill Of Materials	123
C.2.3	Mechanical Dimensions.....	125
C.2.4	Reference WLC-L Printed Circuit Board (PCB) Construction	127

C.2.5	Relay Settings of the Reference WLC-Ls	127
C.2.6	Power Class Settings of the Reference WLC-Ls	128
D. FOD Design Guideline (Informative)	129	
D.1	FOD Scenarios.....	129
D.2	JiFOD-A Implementation Guideline (Informative)	130
D.2.1	Record definition for JiFOD-A Method.....	131
D.2.2	WLC-L JiFOD-A Method Record in the WLC_CAP Message	131
D.2.3	WLC-P JiFOD-A Method Record in the WLCP_INFO Message	131
D.2.4	WLC-L JiFOD-A Method Record in the WLCL_CTL Message	133
D.2.5	WLC-P Definitions	134
D.2.6	JiFOD-A Operations	134
E. Revision History	138	

Figures

Figure 1: NFC Wireless Charging Device User Scenario	18
Figure 2: NFC Wireless Charging System Flowchart	20
Figure 3: Example of WLCS Timing Diagram – Negotiated Mode	21
Figure 4: Wireless Charging Operating Volume (WLC OV)	22
Figure 5: Reference WLC-P6 PCB	35
Figure 6: Reference WLC-P7 PCB	36
Figure 7: Simplified Reference WLC-Ls Circuit	37
Figure 8: Reference WLC-L6 PCB	38
Figure 9: Reference WLC-L7 PCB	38
Figure 10: Impedance Change Example with Increased Impedance	41
Figure 11: Impedance Change Example with Decreased Impedance	41
Figure 12: Example of a Short Time Impedance Change with a Duration of $t_{S,PULSE}$	42
Figure 13: Positive and Negative Impedance Change Cases of the WPT Stop Request	45
Figure 14: WPT Stop Request Section with Detailed Timing Definitions	46
Figure 15: Protocol Architecture	49
Figure 16: Message Exchanges for Different WLC-L Implementation Options	52
Figure 17: Operation Field Adjustment Timing Definition	53
Figure 18: WLC_CAP Format	54
Figure 19: WLCP_INFO Format	74
Figure 20: WLCL_CTL Format	80
Figure 21: WLC Procedure – WLC-P Flowchart	92
Figure 22: WLC Procedure – WLC-L Flowchart	100
Figure 23: Calibration Plane of SMA Plug and Socket	110
Figure 24: Example of VNA Display while Tuning a Reference WLC-P6	111
Figure 25: Example of VNA Display while Tuning a Reference WLC-P7	112
Figure 26: Example of VNA Display while Tuning a Reference WLC-L6	113
Figure 27: Example of VNA Display while Tuning a Reference WLC-L7	114
Figure 28: Circuit for the Reference WLC-P6 and Reference WLC-P7	115
Figure 29: PCB Layout for the Reference WLC-P6	115
Figure 30: PCB Layout for the Reference WLC-P7	116
Figure 31: Reference WLC-P6 Top Layer	119
Figure 32: Reference WLC-P6 Bottom Layer	119
Figure 33: Reference WLC-P7 Top Layer	120

Figure 34: Reference WLC-P7 Bottom Layer	120
Figure 35: Circuit for the Reference WLC-L6 and Reference WLC-L7.....	121
Figure 36: PCB Layout for the Reference WLC-L6	122
Figure 37: PCB Layout for the Reference WLC-L7	122
Figure 38: Reference WLC-L6 Top Layer	125
Figure 39: Reference WLC-L6 Bottom Layer.....	125
Figure 40: Reference WLC-L7 Top Layer.....	126
Figure 41: Reference WLC-L7 Bottom Layer.....	126
Figure 42: FOD Scenarios	129
Figure 43: Initial FOD Timing Diagram	131
Figure 44: JiFOD Timing Definition	134
Figure 45: FOD Method using Impedance Change Monitoring	135
Figure 46: FOD Interval Scheme	135
Figure 47: Initial FOD Sequence – No FO Detection	136
Figure 48: Initial FOD Sequence – FO Detection.....	137

Tables

Table 1: Sample Requirement.....	10
Table 2: Notational Conventions	11
Table 3: Abbreviations	13
Table 4: Wireless Charging Control Messages.....	49
Table 5: WLC Capability Record Payload	55
Table 6: WLC_PROTOCOL_VER Format.....	55
Table 7: WLC_CONFIG Format	57
Table 8: CAP_WT_INT Format	58
Table 9: NDEF_RD_WT Values	60
Table 10: NDEF_WR_TO_INT Values.....	62
Table 11: NDEF_WR_WT_INT Values	63
Table 12 WLC Status and Info Record Payload	65
Table 13: CONTROL_BYTE_1 Format	66
Table 14: RECEIVE_POWER Field Values.....	67
Table 15: RECEIVE_VOLTAGE Field Values	68
Table 16: RECEIVE_CURRENT Field Values.....	68
Table 17: TEMPERATURE_BATTERY Field Values	69
Table 18: CONTROL_BYTE_2 Format	70
Table 19: BATTERY_VOLTAGE Field Values.....	70
Table 20: BATTERY_CURRENT Field Values	71
Table 21: JiFOD Method Record Payload.....	72
Table 22: WLC Poll Information Record Payload.....	75
Table 23: P_TX Values	75
Table 24: WLC_P Capability Definition.....	76
Table 25: WLC-P_POWER_CLASS Definition	77
Table 26: TOT_POWER_STEPS	77
Table 27: CUR_POWER_STEP	78
Table 28: Minimum Step for Power Increase - NEXT_MIN_STEP_INC	78
Table 29: Minimum Step for Power Decrease - NEXT_MIN_STEP_DEC	79
Table 30: WLC Listen Control Record Payload	81
Table 31: STATUS_INFO.....	82
Table 32: WPT_CONFIG.....	83
Table 33: POWER_ADJ_REQ Values	85

Table 34: BATTERY_LEVEL Values.....	86
Table 35: DVR_INFO	87
Table 36: HOLD_OFF_WT_INT Values.....	88
Table 37: ERROR_INFO	89
Table 38: Parameters for WLC OV.....	107
Table 39: Parameters for WLC	107
Table 40: Parameters for Reference Equipment Set Up.....	109
Table 41: Calibration values for Reference WLC-P6 and Reference WLC-P7.....	110
Table 42: Calibration Values for Reference WLC-L6 and Reference WLC-L7	113
Table 43: Reference WLC-P6 - Bill Of Materials	117
Table 44: Reference WLC-P7 - Bill Of Materials	118
Table 45: Antenna Relay Settings of the Reference WLC-L.....	127
Table 46: Short Plug Settings of the Reference WLC-L6 and Reference WLC-L7	128
Table 47: FOD Scenarios	129
Table 48: Format of the JiFOD Method Record	132
Table 49: JiFOD_REQ Format	132
Table 50: JiFOD_DURATION_P Values	132
Table 51: Format of the JiFOD Method Record	133
Table 52: JiFOD_DURATION Values	133
Table 53: Revision History	138

Requirements

Requirements 1: Reference Equipment Support	23
Requirements 2: Analog Interface	24
Requirements 3: Power level of Static Wireless Power Transfer	28
Requirements 4: WLC-P Power of Negotiated WPT	30
Requirements 5: WLC-L Sustainability	32
Requirements 6: Reference WLC-P	36
Requirements 7: Reference WLC-L	38
Requirements 8: Generic FOD	39
Requirements 9: Generic Background FOD	40
Requirements 10: NFC Polling FOD	40
Requirements 11: WLC-P Impedance Change Detection	43
Requirements 12: WPT Stop	44
Requirements 13: NFC LE – WLC-P	47
Requirements 14: NFC LE – WLC-L	48
Requirements 15: WLC Control Protocol – Generic messages	50
Requirements 16: Power Adjustment – Generic timing	53
Requirements 17: WLC_CAP	54
Requirements 18: WLC Capability Record	55
Requirements 19: WLC_PROTOCOL_VER	56
Requirements 20: WLC_CONFIG	57
Requirements 21: CAP_WT_INT	59
Requirements 22: NDEF_RD_WT	60
Requirements 23: NDEF_WR_TO_INT	62
Requirements 24: NDEF_WR_WT_INT	63
Requirements 25: WLC Status and Info Record	65
Requirements 26: Control Byte 1	66
Requirements 27: RECEIVE_POWER	67
Requirements 28: RECEIVE_VOLTAGE	68
Requirements 29: RECEIVE_CURRENT	68
Requirements 30: TEMPERATURE_BATTERY	69
Requirements 31: TEMPERATURE_WLCL	69
Requirements 32: Control Byte 2	70
Requirements 33: BATTERY_VOLTAGE	70

Requirements 34: BATTERY_CURRENT	71
Requirements 35: JiFOD Method Record	72
Requirements 36: COMPANY_ID	72
Requirements 37: METHOD_ID	73
Requirements 38: WLCP_INFO	74
Requirements 39: WLC Poll Information Record.....	75
Requirements 40: P_TX	76
Requirements 41: WLC_P_CAP	76
Requirements 42: WLC-P_POWER_CLASS	77
Requirements 43: TOT_POWER_STEPS.....	77
Requirements 44: CUR_POWER_STEP	78
Requirements 45: Minimum Step for Power Increase - NEXT_MIN_STEP_INC	79
Requirements 46: Minimum Step for Power Decrease - NEXT_MIN_STEP_DEC	79
Requirements 47: WLCL_CTL	80
Requirements 48: WLC Listen Control Record.....	81
Requirements 49: STATUS_INFO	82
Requirements 50: WPT_CONFIG	84
Requirements 51: POWER_ADJ_REQ	85
Requirements 52: BATTERY_LEVEL.....	86
Requirements 53: DVR_INFO	87
Requirements 54: HOLD_OFF_WT_INT.....	88
Requirements 55: ERROR_INFO.....	89
Requirements 56: BATTERY_LEVEL field handling	89
Requirements 57: WLC Protocol Error.....	90
Requirements 58: WLC Procedure – WLC-P.....	93
Requirements 59: WLC Procedure – WLC-L	101

1 Introduction

NFC technology allows power to be transferred to a Tag in order to enable communication. This is achieved by providing a constant carrier signal.

This specification expands this scope by using the NFC communication link to control the power transferred. Thus the pure communication purpose of NFC is extended to wireless charging.

The transferred power can charge small NFC enabled devices such as smartwatches, activity trackers, headsets and many other consumer electronics products.

The benefits of NFC technology for wireless charging include:

- Use of the existing NFC specification for controlling the received power to provide charging
- Sharing the same antenna for both communication and power transfer.

1.1 Objectives

This document specifies a method and procedures for Wireless Power Transfer between two NFC wireless devices. The provided technical foundations use NFC technology for the initiation, control and execution of 13.56 MHz power transfer.

1.2 Applicable Documents or References

The following documents contain provisions that are referenced in this specification. The latest version (including all published amendments) applies unless a publication date is explicitly stated.

[ACTIVITY]	Activity Technical Specification, NFC Forum
[ANALOG]	Analog Technical Specification, NFC Forum
[DIGITAL]	Digital Protocol Technical Specification NFC Forum
[MANU]	Register of IC manufacturers, ISO/IEC JTC1/SC17, Standing Document 5
[NDEF]	NFC Data Exchange Format (NDEF) Technical Specification, NFC Forum
[RFC2119]	Key words for use in RFCs to Indicate Requirement Levels, RFC 2119, S. Bradner, March 1997, Internet Engineering Task Force
[RTD]	NFC Record Type Definition Specification NFC Forum
[RTD-DI]	Device Information RTD Technical Specification, NFC Forum
[T2T]	Type 2 Tag Technical Specification, NFC Forum

[T3T]	Type 3 Tag Technical Specification, NFC Forum
[T4T]	Type 4 Tag Technical Specification, NFC Forum
[T5T]	Type 5 Tag Technical Specification, NFC Forum
[WLC_TC]	Test Specification/Cases for Wireless Charging Technical Specification, NFC Forum

1.3 Administration

The NFC Forum Wireless Charging Specification is an open specification supported by the Near Field Communication Forum, Inc., located at:

401 Edgewater Place, Suite 600
Wakefield, MA, 01880

Tel.: +1 781-876-8955
Fax: +1 781-610-9864

<http://www.nfc-forum.org/>

The NFC Forum, Inc. maintains this specification.

1.4 Trademark and Logo Usage

The Near Field Communication Forum's policy regarding the use of trademarks and logos is described in the NFC Forum Brand Identity Guidelines and N-Mark Usage Guidelines, which can be found on the NFC Forum website.

1.5 Intellectual Property

The Wireless Charging Specification conforms to the Intellectual Property guidelines specified in the NFC Forum's Intellectual Property Rights Policy, as outlined in the NFC Forum Rules of Procedure. These documents are available on the [NFC Forum website](#).

1.6 Special Word Usage

The key words "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT" and "MAY" in this document are to be interpreted as described in [RFC2119].

1.7 Requirement Numbering

Requirements in this document are uniquely numbered with the number appearing next to each requirement. For example:

Table 1: Sample Requirement

1.7.1.1 A car SHALL have four wheels.

A requirement can have different numbers in different versions of the specifications. Hence, all references to a requirement need to include the version of the document as well as the requirement's number.

1.8 Notational Conventions

1.8.1 Notations

The notations shown in Table 2 apply in this document.

Table 2: Notational Conventions

Notation	Description
0xXY	Hexadecimal notation. Hexadecimal numbers are represented using the numbers 0 - 9 and the characters A – F. An “0x” is added as prefix. The most significant byte (MSB) is shown on the left; the least significant byte (LSB) on the right. Example: 0xF5
xyb	Binary notation. Binary numbers are represented by strings of the digits 0 and 1, shown with the most significant bit (msb) on the left and the least significant bit (lsb) on the right. A “b” is added at the end. Example: 11110101b
xy	Decimal notation Decimal numbers are represented without any tailing character. Example: 245
⌈ .. ⌉	A roundup integer function is expressed by the brackets ⌈ .. ⌉ Example: ⌈ 7/8 ⌉ = 1, ⌈ 8/8 ⌉ = 1, ⌈ 9/8 ⌉ = 2
Specially Defined Names	Terms defined in the Glossary or other NFC Technical Specification Glossaries are written with initial capital letters.
STATE	Names of defined States are written in bold all-capital COURIER FONT letters.
COMMAND and RESPONSE	The defined Command and Response names are written in non-bold all-capital letters.
PARAMETER	Parameter names are written in non-bold all-capital letters. Parameter names start with one of the following prefixes: CON_ Prefix for Configuration Parameters (e.g., CON_DEVICES_LIMIT_A). INT_ Prefix for variables used in the Activities (e.g., INT_COLL_PEND). GRE_ Prefix for variables used in the Greedy Collection (e.g., GRE_POLL_A).

1.8.2 Values of Parameters

Throughout the document, symbols are used to identify the values of parameters. The actual values of the parameters are listed in Appendix B. Symbols referenced in Appendix B are written in **Arial bold** to distinguish them in the text.

1.9 Abbreviations

The abbreviations and acronyms used in this document are defined in Table 3.

Table 3: Abbreviations

Abbreviation	Description
AM	Amplitude Modulation
bFOD	background Foreign Object Detection
BOM	Bill of Materials
DEP	Data Exchange Protocol
DUT	Device Under Test
DVR	Delta V_{ov} Ratio
FO	Foreign Object
FOD	Foreign Object Detection
iFOD	initial Foreign Object Detection
JiFOD	Joint initial Foreign Object Detection
NDEF	NFC Data Exchange Format
NFC LE	NFC Link Establishment
NVM	Non-Volatile Memory
PCB	Printed Circuit Board
RF	Radio Frequency
VNA	Vector Network Analyzer
WCC	Wireless Charging Control
WCCA	Wireless Charging Control Activation
WLC	Wireless Charging
WLC_CAP	Wireless Charging Capability
WLC-L	Wireless Charging Listener device
WLC-P	Wireless Charging Poller device
WLC OV	Wireless Charging Operating Volume
WLCL_CTL	Wireless Charging Listen Control
WLCP_INFO	Wireless Charging Poll Information
WLCS	Wireless Charging System
WPT	Wireless Power Transfer

1.10 Glossary

Activity

A process within an NFC Forum Device.

Background FOD

Mechanism to provide Foreign Object Detection (FOD) of Foreign Objects (FOs) that are inserted into the Wireless Charging Operating Volume (WLC OV) during Wireless Power Transfer (WPT).

Command

An instruction transmitted from one device to another device in order to move the other device through a state machine.

Foreign Object

Any metallic object or tag, excluding Wireless Charging Listeners (WLC-Ls), that can be heated or be damaged when exposed to a Radio Frequency (RF) field in which the field strength exceeds $V_{ov,RX,MAX}$. For example: a contactless tag or a metallic object such as coin or paperclip.

Initial FOD

Initial Foreign Object Detection (iFOD) is used before entering Wireless Power Transfer (WPT) to detect foreign objects (FOs) that cannot be detected by the NFC Polling FOD.

Joint Initial FOD

Joint initial Foreign Object Detection (JiFOD) requires both a Wireless Charging Poller device (WLC-P) and a Wireless Charging Listener device (WLC-L) to agree on a specific initial Foreign Object Detection (iFOD) method. It also implies an agreed time interval prior to the Wireless Power Transfer (WPT) in which the JiFOD is performed.

Listen Mode

The mode of an NFC Forum Device where it receives Commands and sends Responses.

NDEF Message

The basic message construct defined by the NFC Data Exchange Format Specification. An NDEF Message contains one or more NDEF Records.

NDEF Payload

The application data carried in an NDEF Record.

NDEF Record

An NDEF Record contains a payload described by a type, a length, and an optional identifier.

Negotiated WLC Control Protocol

A variant of the Wireless Charging (WLC) Control Protocol which uses the Wireless Charging Capability (WLC_CAP) message to inform the Wireless Charging Poller device (WLC-P) about the Wireless Charging Listener device (WLC-L) capabilities and uses the WLCP_INFO and WLCL_CTL messages to negotiate the parameters for the next Wireless Power Transfer (WPT) phase.

NFC-DEP Target

Role of an NFC Forum Device, reached when the Listener has gone through a number of Activities. In this mode the NFC Forum Device communicates using the NFC-DEP Protocol.

NFC Forum Device

A device that supports at least one communication protocol for at least one communication mode defined by the NFC Forum specifications. Currently the following NFC Forum Devices are defined: NFC Universal Device, NFC Mobile Device, NFC Tag Device and NFC Reader Device.

NFC Forum Tag

A contactless tag or (smart) card supporting NDEF.

NFC Link Establishment

Process to establish an NFC communication link.

NFC Mobile Device

An NFC Forum Device that supports the Reader/Writer Mode and Card Emulator.

NFC Polling FOD

Mechanism to detect Foreign Objects (FOs) during NFC Link Establishment.

NFC Reader Device

An NFC Forum Device that supports the following Modus Operandi: Reader/Writer. It can also support Initiator.

NFC Tag Device

An NFC Forum Device that supports at least one communication protocol for Card Emulator and NDEF.

NFC Universal Device

An NFC Forum Device that supports the following Modus Operandi: Initiator, Target, and Reader/Writer. It can also support Card Emulator.

NFC Wireless Charging Device

An NFC Forum Device that supports either the Modus Operandi for the Reader/Writer or a Tag and additionally supports the wireless charging technology defined by this specification.

No Remote Field Sensed

A condition that indicates the absence of the Remote Field for a certain time.

Operating Field

The radio frequency field created by the NFC Forum Device or Reference Wireless Charging Poller (WLC-P).

Operating Field Off

A condition of the Operating Field when the field strength is below a well-defined threshold.

Operating Field On

A condition of the Operating Field when the field strength is equal to or higher than a well-defined threshold for a minimum period of time.

Poll Mode

The mode of an NFC Forum Device in which it sends Commands and receives Responses.

Poller

An NFC Forum Device in Poll Mode.

Reader/Writer

Role of a Poller when it has gone through a number of Activities. In this mode the Poller communicates with Type 2 Tags, Type 3 Tags, Type 4 Tags or Type 5 Tags.

Reference WLC-L

The part of the NFC Forum Reference Equipment employed to evaluate the radio frequency (RF), power and digital characteristics of Wireless Charging Pollers (WLC-Ps).

Reference WLC-P

The part of the NFC Forum Reference Equipment employed to evaluate the radio frequency (RF), power and digital characteristics of Wireless Charging Listeners (WLC-Ls).

Remote Field

The Radio Frequency (RF) field generated by a remote device and sensed by the NFC Forum Device.

Remote Field Off

A condition in which the Remote Field is below a certain threshold defined in [ANALOG].

Remote Field On

A condition of the Remote Field being stable and strong enough to put the NFC Forum Device in a state that it can operate in Passive Communication Mode. Defined in [ANALOG].

Response

Information sent from one device to another device upon receipt of a Command. The information received by the other device allows it to continue the data exchange.

Static WLC Control Protocol

A variant of the WLC Control Protocol in which only the Wireless Charging Capability (WLC_CAP) message is used.

Wireless Charging Control

A process, performed using NFC communication methods as defined by the NFC Forum, to control the wireless power delivery between a Wireless Charging Poller (WLC-P) and a Wireless Charging Listener (WLC-L).

Wireless Charging Listener

An NFC Forum Device having NFC Wireless Charging capability, which allows such device to receive power from a Wireless Charging Poller (WLC-P).

Wireless Charging Operating Volume

The three dimensional space, as defined by the NFC Forum, in which a Wireless Charging Poller can communicate with and charge a Wireless Charging Listener.

Wireless Charging Poller

An NFC Forum Device having NFC Wireless Charging capability, which allows such device to perform Wireless Power Transfer (WPT) to a Wireless Charging Listener (WLC-L).

Wireless Charging Technology

General term referring to any wireless charging technology existing in the market today or in the future, including the NFC Wireless Charging.

Wireless Power Transfer

A process during which power is wirelessly transferred from a Wireless Charging Poller (WLC-P) to a Wireless Charging Listener (WLC-L).

WLC Control Protocol

The protocol used to control the Wireless Power Transfer (WPT) between a Wireless Charging Poller (WLC-P) and a Wireless Charging Listener (WLC-L). The Wireless Charging Control Protocol exists in two variants: the Static WLC Control Protocol and the Negotiated WLC Control Protocol.

WLC Protocol Error

Wireless Charging (WLC) Semantic Error: A correct WLC record is received when it is not expected.

WLC Syntax Error: An NFC Data Exchange Format (NDEF) record is received with invalid content.

WPT Stop

An impedance change pattern that is sent in order to stop the Wireless Power Transfer (WPT) phase.